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Effect of finite boundaries on the Stokes resistance of 
an arbitrary particle 

Part 3. Translation and rotation 

By R. G. COX? AND H. BRENNERT 
Department of Chemical Engineering, New York University 

(Received 24 August 1966) 

A general theory is given for the effect of solid walls on a translating and rotating 
particle in the limiting case of zero Reynolds number. Both the force and couple 
on the body are found as an expansion in terms of a parameter K = a/& assumed 
small, where a is a characteristic particle size and d a characteristic distance of 
the particle from walls. It is shown how such expansions may be used in specific 
examples. The theory is then extended to include the general motion of a small 
particle in an arbitrary Stokes flow field in which solid or other boundaries are 
present. Finally the motion of two small bodies of arbitrary shape in an arbitrary 
Stokes flow field is considered. 

1. Introduction 
Many authors have considered theoretically the effect of walls on the Stokesian 

motion of small solid particles when the particle and the walls have particularly 
simple shapes. Thus Cunningham (1910),  Oseen (1927),  Haberman & Sayre (1958) 
and Famularo (1961) have considered the motion of a sphere in the neighbour- 
hood of solid walls whilst Wakiya (1957, 1959) has considered various wall-effect 
problems for an ellipsoidal particle. Chang (1961) seems to be the first author to 
consider bodies of more general shape. He derived a relation giving the drag on 
any body of revolution falling parallel to its symmetry axis at  the centre of a 
circular cylinder. Brenner (1962, 1964a) considered the Stokes resistance of 
bodies of completely arbitrary shape moving in the neighbourhood of walls, the 
walls also being arbitrary. However he only considered the problem of finding the 
force on bodies which were undergoing translation without rotation. 

The object of the present work is to obtain results for the wall effect for the 
force and couple acting upon a body of arbitrary shape, such a body possessing 
both translation and rotation. We shall express such results as an expansion in 
terms of a parameter K ,  defined by the relation 

K = aid,  (1.1) 
where a is a characteristic particle dimension and d is a characteristic distance of 
the particle from the walls. 
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Whereas the authors cited above all obtained expansions in this parameter K 

by the use of the method of reflexions, we shall use an alternative method by 
forming inner and outer expansions. Although such a method is essentially 
equivalent to the method of reflexions, it will be found to be more convenient for 
our present purpose. 

We shall first consider the flow field resulting from a body of arbitrary shape 
being placed in an arbitrary Stokes velocity field, the asymptotic value of the 
disturbance velocity field being found for large distances from the body. These 
results will then be used to obtain an expansion in K for the force and couple acting 
on a body of arbitrary shape which is undergoing translation and rotation in a 
fluid a t  rest bounded by solid walls. Such an expansion will be found for all orders 
in K. 

It will be shown how such an expansion may be simplified by making use of 
body symmetry and wall symmetry. The uses and applications of such expansions 
in K will be explained by the use of specific examples of wall effects. 

The general theory is then extended to include the general motion of a particle 
of arbitrary shape placed in a fluid which is bounded by solid walls and which is 
also undergoing some arbitrary Stokes motion. As an example we consider an 
ellipsoid placed in a fluid between two moving parallel plates, the results obtained 
being compared with those obtained by Wakiya (1957) in his examination of this 
problem. 

Finally, we consider two small solid bodies of arbitrary shape placed in an 
arbitrary Stokes flow field, no other solid walls being present. We obtain the 
forces and couples on these bodies again as an expansion in terms of a parameter 
K defined by (1.  l),  where the length d is now defined to be the distance between the 
two particles. 

2. Particles in arbitrary fields of flow 
Into an undisturbed arbitrary Stokes velocity field v', we suppose a solid body 

of arbitrary shape is placed. This body with surface B is assumed to move with a 
velocity V' and angular velocity S2'. The dimensional velocity and pressure then 
occurring in the fluid are denoted by V' and p' respectively. In  terms of a charac- 
teristic body dimension, a, and a characteristic fluid velocity U (which may be 
taken to be either IV'I, laQ'l or max. Iv'l) dimensionless quantities 3, V, S2 ,  v 
and p may be defined corresponding respectively to vr, V', a', v' and pf by the 

relations V = 3 ' 1 ~ ;  v = v'/u; Q ="a'a/U; 

v = v'lU; p = p'a/,uU; r = f l u ,  (2.1) 

v2v-vp = 0, v . v  = 0 (2.2) 

v - 3  as r-tco; V = V + Q A ~  on B. (2.3) 

u = v-v. (2 .4 )  

r' being the dimensional position vector. Thus v and p satisfy 

with the boundary conditions 

We define u to be the dimensionless disturbance velocity field, i.e. - 
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Thus, since must satisfy Stokes equations, it follows that u satisfies 

v2u-vq = 0; v .u = 0; 

u+O as r+m; u = V + f i ~ r - V  onB. (2 .5 )  

We suppose now that the solution (u, q)  of (2.5) is known and that the correspond- 
ing stress tensor q$j, say, has been calculated. We take Pij to be the stress tensor 
corresponding to the undisturbed flow v. 

Consider now the flow field (u*, q*) satisfying 

V%l*-Vq*+A = 0; v.u* = 0; 

u*+O as r+co, (2.6) 

where these equations are valid everywhere and where A is zero everywhere except 
on the surface B where it represents a surface distribution of force of magnitude 
- (qij + pgj) ni, where ni is the outward unit normal to the surface B. The solution 
of the equations (2.6) must be unique. By direct substitution, it is seen that 

u* = V+Qhr-V(r) inside B 

u* = u outside B (2.7) 

is a solution (2.6) and hence the only solution. Thus we may consider (u, q)  to be 
the solution of equation (2.6) outside the surface B. The value of this velocity 
and pressure field may be expressed in terms of A as a surface integral over B. 
Hence 

A A. (r - r’) (r - r’) 

where r‘ is a general point on the surface B and dS‘ an element of surface area of B. 
We now find the asymptotic expansion of u(r) and q(r) for large r by noting 

that the function 

may be written in the Taylor series 
1 

f&, r‘) = fij(r, O ) + r ~ [ ~ f ~ r / ~ ~ ~ ~ ] c ~ , a + ~  r;,r;[azfii/ar;ar~]c,,o+ ... (2.10) 

if lr’l < Irl. From equation (2.9) we have relations such as 

(afii/Wrrso = - afij(r, O)/ar,. 

fij(r,r’) = sii-r;(asij/ark) +-r;,r~[a2sij /(arkar,)]+ ..., 

(2.11) 

These relations may be used to reduce the equation (2.10) to the form 

1 
2! 

(2.12) 

where sij = r-l( + rtri/r2). (2.13) 

The substitution offij from equation (2.12) into the equation (2.8) for u(r) yields 

(2.14) 
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In  a similar manner q(r) may be shown to possess the asymptotic expansion 
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(2.15) 

where ti = 2ri/r3. (2.16) 

Thus the asymptotic expansion of the disturbance field (u, q)  for large r is 

ui = Aisij+ Aik(asij/ark) +Ai,,[a2sii/(ar,ar,)]+ ..., 
4 = Aiti+Aik(ati/aTk) +Aikt[a2ti/(arkari)] + ..., (2.17) 

where the tensors Ai ,  Aik, Aikl,. . . , are dependent upon the shape of the body B as 
well as being dependent upon the quantities V, $2 and v(r) in a linear manner. 

3. Wall effects 
In this section we consider the Stokesian motion of a small solid particle in a 

stationary fluid in which there are solid walls present. We let a be a characteristic 
dimension of the body B and d be a characteristic distance of the body from the 
walls W .  The ratio K = a/d is assumed to be very small. All quantities are 
measured relative to a set of fixed axes at  an origin 0 within the body B. We 
suppose the velocity and angular velocity of the body (at 0) are respectively V‘ 
and a‘. The velocity and pressure occurring at  a general point in the fluid are 
taken to be v‘ and p’. Dimensionless (undashed) quantities are now defined in a 
manner similar to that of $ 2  by the length a, a characteristic velocity U (equal 
to either IV’I or la8’1) and the viscosity p. 

The dimensionless velocity v and pressure p of the fluid then satisfy 

v2v-vp = 0, v.v = 0, (3.1) 

with the boundary conditions 

(3.2) 1 v = O  on W ;  v+O as r-too; 

v = V + Q A r  onB,  

where the walls W are at a distance K - ~  from the body. 

expansion 
In order to solve this problem, we define inner and outer expansions. The inner 

1 v = vo+v,+v2+ ..., 
p = PO+Pl+P2+ * * * ,  

is defined to be the solution of the equations 

I v2v-vp = 0, v . v  = 0, 

v=V+IRAr onB,  

(3.3) 

(3.4) 

the outer boundary condition being obtained from the required matching onto 
the outer expansion. In  order to define this outer expansion, we first define a new 
independent variable P by the relation - 

r = K r .  (3.5) 
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The outer expansion 

is made to satisfy 
v = Q,+Q,+ ..., p = fj,+p,+..., (3.6) 

(3 .7 )  
v = O  on W ,  v+O as r+m.  

We let F,, F,, F,, ..., be the dimensionless forces (equal to FJpaU, FJpaU ...) 
acting on the body due to the flow fields (vo,po), ( v , , ~ , ) ,  ..., etc. Similarly Go, 
G,, G,, ..., are defined to be the dimensionless couples (equal to GA/pa2U, 
G;/pa,U, . . .) acting on the body due to (vo, p o ) ,  (vl,pl), (v2,p2), . . ., respectively. 
We write F and G to be the total dimensionless force and couple acting on the 
body. The six-dimensional force-couple vectors 8, So, 5,, . . . , are defined to be 

1 p2V-p(p/K) = 0, 0 . V  = 0, 

Then, by definition 8 = 80+&+82+ .... (3.9) 

The six dimensional velocity-angular velocity vector of the body B is defined by 
the relation 

B =  (J. (3.10) 

We define uniquely the first term (vo,po) of the inner expansion by requiring 
that vO+O as r+m. Thus 

(3.11) 1 v2vo-vpo = 0, v . v o  = 0, 

v o = V + S Z ~ r  onB,  vO+O as r+w.  

By equations (2.17), it is seen that for large r, (vo,po) is of the form 

(v , )~  = Aisij + Aik(asij/ar,) + ... 
po = A,ti+Ai,(ati/ark)+ ..., 

(3.12) 

where the tensors A,, Aik, . . . , are dependent on the body shape as well as being 
linearly dependent on the vectors V and SZ and hence upon the six-dimensional 
vectorB.Thusthereexist quantities (&, ( Z , ) s k t , .  . .,etc.,dependentonlyuponbody 

(3.13) 
shape such that 

A,  = (ll)sz&; Ai, = (l,)ikl%z, 

where the index l takes the values 1-6. For I = 1, 2, 3 the quantities ( I , ) , , ,  
etc., are true tensors whereas for I = 4, 5, 6 they are pseudotensors. 

. . . , 

Thus for large r, the asymptotic form of (vo, po) is 

where Si, and fi are the same expressions as sii and ti with r replaced by P 



396 R. G. Cox and H .  Brenner 

The first term in the outer expansion (Vl, pl) satisfies the equations (3.7) with 
TI and 17, for small values of P having the form (3.15). Writing 

.. ) (3.16) 
(6T)j = (V"1)j - K ( z l ) i z % z ~ i i - K 2 ( z 2 ) i k ~ ~ l ( a ~ i ~ / a P k )  - ., 

(@TI.) = (@1/K)  - K ( z l ) i i ~ z ~ ~ - K 2 ( z 2 ) i k l % z ( a ~ i / a P k )  - ..., 
we see that (q?, 17;) satisfies Stokes equations with the boundary conditions 

(6T)j N - &)iz@z&- - ... as P+m, (3.17) I (l?T)i bounded as F+O, 

and (6T)j = - K ( Z ~ ) ~ ~ % ~ ~ ~ ~  - ~ ~ ( Z ~ ) ~ ~ ~ % ~ ( a ~ ~ ~ / a ~ ~ )  - ... on W .  

Thus expanding (v"?), in a Taylor series about F = 0,  we see that 

(v";), = Bp+P,B,+f8P,BBqsp+ ... as F+O, (3.18) 

where Bp, Bqp, Bpsp, .. ., are linear functions of the quantities K ( Z ~ ) ~ ~ % ~ ,  ~ 2 ( l , ) ~ ~ ~ g $ .  .. , 
etc., appearing in the boundary conditions (3.17). Thus we may write 

(3.19) i 
B p  = (1Ll)Pj K V l ) j l &  + (1L2)p jkK2(~2)k j l%z  + 

B*p = (2L1),pjK(ll)jl%Z + (2L2)gpjkK2(E2)kjZ%2 + * -.> 
* , 

J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
where ( & J p j ,  (2Ll)qpj, .... etc., are tensors which are functions only of 
the shape of the boundaries W .  

Equation (3.18) when expressed in terms of inner variables, takes the form 

(6T)p = Bp + KT* B, + K~ rs r, Bqsp + .... (3.20) 

The next term in the inner expansion (V1, pl) satisfies Stokes equations and is 
made to satisfy the boundary conditions 

(wJP = 0 on B, 

(w& N Bp+~rpBpp+~2rsr,B,,p+ ... as r + m .  
(3.21) 

Writing (w& . (wJp- Bp-~rqBpp-  .... it may be seen that by making use of 
the results of Q 2, the asymptotic form of vT for large r is 

( q ) j  . c&j+Cik(asij/ark) + .... 
ci = (1q1)ipBp + K(lPz)ippB,, + . . - 3  

Cik = ( 2 q l ) i k p  Bp + K (2Pl2)ikpqBqp + * * - 9 

(3.22) 

(3.23) 

the tensors (lql)ip,  (1q2)ipp, .... being functions only of the shape of the body B. It 
should be noted that these tensors (lql)ip, (lq2)ip, need not necessarily be unique 
because there exist relations between the coefficients BpP, B,, in (3.18) since 
itself must satisfy Stokes equations (i.e. we have V .  9: = 0 and V A V2vl = 0). 
However, this non-uniqueness need not concern us since any choice of values for 
these tensors should result in the same flow field (3.22). 

Prom the definition of the quantities ,ql and nq2 (see equation (3.23)) it is seen 
that in polyadic notation 

I , = ( -  n 1, - , q 2  (3.24) 

1 where 

..................... 
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(vo, po)  is given by the equations (3.14). Thus the force F9 and couple Go due to 
this flow field is 

(Y0)j = - 8n(z1)j@l, (G0)j = - SnEjik(&)ik&; (3.25) 
v1 is given by 

(211&, = {Bp + KrqBqp - - .} cisij 4- Cik(asij/ark) . , 
where C,, Cik, . . . , are given by the equations (3.19) and (3.23). Thus F, and G, are 

Hence the six-dimensional force-couple tensors a0 and g1 are given (in polyadic 
notation) by the relations 

go= -A.B, (3.27) 

51 = CI Pn+l[n + 11 (,+1Lm) [ml 1, .BKm+n, (3.28) 

where the summation is taken over all integers m, n such that m 2 1, n > 0. R 
is the six-dimensional resistance tensor defined as 

m, n 

A = Sn( +I1 ) 
-€:12  ' 

or in terms of the tensors lql, lq2, ..., etc. as 

(3.29) 

The quantity pn f l  appearing in equation (3.28) consists of two (n+2)  order 
tensors, one being a true tensor and the other a pseudotensor. Thus P,+~  is 
defined as 

- l%+l 

pn+l = 8n( + E : (3.30) 

i.e. it  is a quantity defined by (n + 2) suffixes all but the &st running from 1 to 3, 
the first suffix itself running from 1 to 6. For this first suffix running from 1 to 3, 
pn+l is the true tensor (8n1qn+,), whilst for the first suffix running from 4 to 6 it 
is the pseudotensor ( - S ~ E  : 2q,+,). 

In  a similar manner we may repeat the above arguments to find (v2,p2) and 
hence g2. Thus we obtain 

52 = X ~a+l[a+ ll(a+lLb) [bl (aqe+l) [ c +  11 (c+lLd) [dl l c ~ . @ ~ ' + ~ + ~ ~ ,  (3.31) 
abed 

the summation being over all integers a, 6 ,  c, d such that a, c 2 0 ;  b,  d > 1. 

5 may be obtained as 
By repeating this process, the complete expansion for the force-couple vector 

Pa+l [a+ 11 (a+lLb) 161 5 = - A * B + C  Ka+b+...+n 

x (aqc+1) [c + 11 * - * PI (2qm+1) [m + 11 (,+lL,) 1.1 1, * %  (3.32) 

a , c  ,..., m > 0 ,  b ,..., Z,n> 1. (3.33) 

the summation being taken over all integers a, b,  . . . , n, satisfying 
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It should be noted that the above arguments remain valid if some of the walls 
W ,  instead of being solid, are free surfaces. The equation (3.32) would therefore 
still apply in such cases. 

In the following section, it will be demonstrated how the expansion (3.32) may 
be used in specific examples. 

Note on polyudic notation 

If i,, i2, i, are the unit base vectors of the orthogonal co-ordinate system used, 
then a polyadic P may be written as 

= c (ia ib  * * *  in) Pub...n, 
ab ... n 

where the scalar quantities may be considered as the components of the 
tensor corresponding to the polyadic P. The direct produet P Q of the polyadic 
P with another polyadic Q corresponding to a tensor Qpq..,w, is defined by 

PQ = C C ( i a i b * * * i n & i n )  ( i p i q * * * i w )  Pub...nQpq...w 
ab.. .n pq., .w 

the contracted products P . Q and P : Q being defined as 

and 

with similar definitions for P[3] Q, P[4] Q..  . , there being n-contractions in a 
product P[n] Q. 

The above notation is that used by Milne (1957) and Chapman & Cowling 
(1961). 

4. Examples of wall effects 

may by the equations (3.24), (3.30) and (3.32), be shown to be given by 
The force F and couple G acting upon a non-rotating body for which 8 = 0,  

F/8n = + 191. v + 41%. 1Ll. A l l .  v 
+ K2[191 * l L 2  : 291 + 1q2 : 2Ll. 1% + 1%. 1Ll. 191. 1Ll. 1q1l. v + O P ) ,  (4.1) 

- K2E : r241.1L2 : 2% + 2q2 : 2Ll. 1% + 2q1.  lL,. 1q1. 1LI. 1411. v + 0 ( K 3 ) .  (4.2) 

G/8n = - E : ,q1. V- K [ E  2ql. 1L1.1qJ. V 

Similarly for a body undergoing a rotation without translation, the force Fiand 
couple G are given by 

F/8n = + ,q2 : E .  8 + t&ql. lLl. ,q2 : €1. SZ 

+ K2[19,. l L 2  2q2 + 1q2 : 2L1. 1q2 + 1%. 1Ll. 1%. 1Ll. A 2 1  : E .  8 + O ( f i ) ,  (4.3) 

: r241.1JJ2 2q2 + 2q2 : 2Ll. 1q2 + 2%. 1Ll. 1%. 1Ll. 1q21: E. 8 + 0 ( K 3 ) .  (4.4) 

G / ~ T  = - E :  2q2 : E .  8 - K [ E  :2q,.lLl. 1q2 :€I. 8 
- 
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These formulae for the force and couple acting on the body may be simplified 
should the body possess symmetry properties about the chosen origin. For ex- 
ample, if the body were centrally symmetric the tensor rq, would be identically 
zero if ( r  + s) were odd. In  a similar manner, if the walls W should possess sym- 
metry about the origin, this would place a restriction upon the form taken by the 
tensors TLs. 

As a specific example we consider a body which is axially symmetric about an 
axis 1 , which also possesses fore-aft symmetry about the origin. Such a body we 
assume to be translating without rotation in the direction of the axis 2, in a fluid 

. I .  

W 
I , 

FIUVRE 1 

where a, b, c, d are constants. This result is in complete agreement with that 
obtained by Wakiya (1957) for the force and couple acting upon a spheroid 
translating in a fluid contained between two parallel planes. 

As a second example, we consider the pure rotation of a sphere about an axis 1, 
in a fluid bounded by a system of walls which is axisymmetric about the axis 1 
(see figure 2). We take axes 2 and 3 through the centre of the sphere. Relative to 
spherical polar axes at the sphere centre based on the axis 1, the only non-zero 
component of fluid velocity is v$ and this satisfies the equation 
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The solution of this equation is 

where n is an integer. 

increases like r+n at infinity, then such a flow must be of the form 

R. G. Cox and H .  Brenner 

,u$ = (AT" + Br-n-1)P,(cos B) ,  

Thus we see that if a sphere is axially situated in an axisymmetric flow which 

w+ = Ar"P,(cos 0) 

and the disturbance flow due to the sphere must be 

W$ = - Ar-n-lP,(cos 8). 

W 

f l  
I 
I 
I 
I 

FIGURE 2 

Thus for examples of the type which we are now considering, the tensor Tqs must 
be identically zero for all r and s unless r = s. This result greatly simplifies the 
equation (3.32). Thus it may be shown that G = (G,, 0,  0 )  where G, is given by 

Gl/8n = I1 + K3{4(2qZ : ZL2)3Z3Z} + K6{4(2% ZLZ)3Z32I2 f K9{4(2qZ : ~ ~ 2 ) 3 ~ 3 ~ } ~ 1  

(2&t)23iiejjil ni - K8[E : 2% : 2L3[3I 3(13[31 sL2 : 2 q 2  : E l .  8 + O(K1O)- 

Thus if "GI is the value of G, which one would expect in the absence of walls (i.e. 
for K = 0 ) ,  then we see that G, is given in terms of "G, by the relation 

1 
1 + a ~ 3  + b K 8  

- + O(K1O), 
Gl ~- 

mG, 
(4.7) 

where a and b are constants. Should the walls W possess fore-aft symmetry about 
the plane 1 (containing axes 2 and 3), then G, may be shown to be of the form 

1 
1 + aK3 + ~ ~ l o  + d d 4  

- + o ( q ,  Gl -- 
"G, 

where a, c and d are constants. The solution (4.7) is in agreement with the results 
obtained by Brenner (19644 for a rotating sphere in the neighbourhood of a solid 



Stokes resistance of an arbitrary particle. Part 3 40 1 

plane wall (or free surface). An example for which the walls W possessed fore-aft 
symmetry was also investigated by Brenner & Sonshine (1964). This concerned 
a sphere rotating a t  the centre of an infinitely long circular cylinder, for which it 
was shown that the couple acting on the sphere was exactly of the form given by 
the equation (4.8). 

We now investigate a very specific example in which a small spherical particle 
rotates about an axis 1 in a fluid contained in a solid spherical vessel concentric 
with the particle (figure 3). As before the tensor rqs must be identically zero for 

I 

I 
I 

FIGURE 3 

all r and s unless r = s. Since the walls W are now spherical with centre at the 
origin, it  may be proved in a likewise manner that the tensor 4, is identically 
zero unless r = a. The equation (3.32) then gives the couple G, on the particle as 
the expansion 

m 

n=O 
= + 8n(2q2)23$jeji1 Ql c { 4 ( Z q Z  :2L2)3232K3)n, (4.9) 

this relation being the entire expansion. However, the series occurring in this 
equation is a geometric series and may therefore be summed to give 

(4.10) 

This result should be compared with the exact solution to this problem obtained 
by Landau & Lifshitz (1959) without making the assumption that K 1. They 

- 8nQ1 obtained the expression 
a,= - 9  

which is exactly analogous to equation (4.10). 
26 

(4.11) 

Fluid Meoh. 28 
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5. Wall effects with arbitrary fields of flow 
In  this section we extend the theory described in $ 3  to problems in which a 

small particle of arbitrary shape is placed in a fluid which is undergoing some 
arbitrary Stokesian motion, there also being a system of walls W present. We let 
the undisturbed fluid motion be U (in dimensionless variables), which we assume 
to possess a length scale of the same order of magnitude as the distance d from the 
particle to wall. Thus we shall take U to be a function of P. Now U and the cor- 
responding pressure P must satisfy Stokes equations together with the required 
boundary conditions on W ,  

i.e. 

and 
(5.1) 

a2u- VP = 0 ,  a .  u = 0, 

U =  U, on W ,  

where U, is the velocity of the wails W ,  which we have for the moment assumed 
to be both solid and rigid. 

As in $3, we denote by 5 the six-dimensional force-couple vector, i.e. 

5 = (g * 
However, 8 now denotes the six-dimensional velocity-angular velocity vector of 
the particle relative to the fluid. Thus we define 

v- u, @ = (  IR ) 7  
(5.3) 

where U, is the value of the velocity field U at the origin (and V the value of the 
particle velocity at  the origin). 

By using methods analogous to that used in $ 3  it  may be shown that 5 is given 
as an expansion in K as 

5 = - fi .% $. [KP2 : (7 u), + K2p3[3](&Tv u), $- . . .] 
f c h-a+b+-.+n{P,+lra + 1l(a+lLb)[~l(bqc+l)r~ + 11 * * .  (lqm+l)rm + 11(,+1L,)[4) 

(5.4) 

where the summation is taken over all integers a, b . . . n such that 

a ,c  ... m 2 0 ,  b,d ... l , n > 1 .  (5.5) 

The quantities (a U),, ($97 U),, . . . , are the values of derivatives of U a t  the 
origin. 

Like the equation (3.32), the above equation (5.4) remains valid if some of the 
boundaries W are free surfaces so long as the flow field U itself satisfies the free- 
surface boundary conditions on all such surfaces. 

It should be noted that when the arbitrary Stokes flow field is zero the above 
equation for 3 reduces to the equation (3.32). Should there be no walls present 
(with U + 0 ) ,  the value of 5 would be given by 

5 = - fi .8 + [ K P 2  : (a U), + K2p3[3](pV U), + ...I. (5 .6)  
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This result for the force and couple acting upon a particle in an arbitrary flow 
field has been given by Brenner (19643) in a slightly different form. 

As an example of a body placed in a Stokes flow with solid walls present, we 
consider a small body axisymmetric about the axis 1 and possessing fore-aft 
symmetry placed at  rest between two parallel plates each perpendicular to the 
axis 3. Relative to the origin of co-ordinates at the centre of the body the positions 
of the two plates are defined by 

P 3 -  - -d, and P 3 =  +d, (d, and d, > 0 )  

in terms of the P variables. d, and d, are assumed to be of order unity (i.e. in- 
dependent of the parameter K ) .  We also suppose that initially there exists an 
undisturbed Stokes velocity field U given by 

u = ( U ,  0, 01, 

where u = a+p3+y?;, 
a, ,8 and y being constants. The upper and lower plates are taken to have velocities 
(a +Pa, + ydi) and (a -& + yd:) respectively so that the no-slip boundary con- 
ditions are satisfied (see figure 4). We now make use of the formula (5.4) to find 

I 
1 

FIGURE 4 

an expansion in K for the dimensionless force F and couple G acting on the body. 
As in $4, we now make use of the symmetry of the body and of the walls to show 
that F and G are given by 

= (F1> '7 O ) ,  = ( O ,  G,, O), (5.7) 

where 

in which a, b,  c,  . . . , h are constants, independent of a, ,8, y and K .  Wakiya (1957) 
has considered the present problem for the special case of the body being an 
axially symmetric spheroid. The values of F, and G, were respectively calculated 
to orders K4 and K ~ ,  when the spheroid was taken to be a disk. This was done for 
values of (a, p, y )  taken to be (1, 0, 0) (1, 1, 0) and (1, g, - 4). These results 
showed complete agreement with the equations (5.8). Wakiya computed the 

26-2 
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numerical coefficients occurring in his expansions ford, = 3d1. For this case, one 
can make use of these expansions to find the values of the constants a, b, c, . . . , h. 
Thus one obtains Fl and Gz as 

(5.9) 

1 6 ( ~ +  0 . 3 3 3 3 ~ ~ ~ -  0*1230/3~~)  
F - -  

G, = ”(8.- 0- 1 8 4 6 ~ ~ ~  

- (1  - 0 .5540~  + 0.0272K3 - O-O2ii?) + o(K5) ’ 

3 1 - 0.5540~ 

It may also be shown that for the special cases d1 = d,, for which the walls are 
centrally symmetric about the origin, 

c = f = h = O ,  
a@+ K2by 

yielding F -  + 0 ( K 5 ) ,  
l -  l+dK+eK3 

(5.10) 

FIGURE 5 

6. Two bodies in an arbitrary Stokes flow field 
I n  this section we extend the theory developed in $ 3  to fhd the forces and 

couples acting upon each of two bodies of arbitrary shape placed in some arbitrary 
Stokes flow field there being no solid or other boundaries present (see figure 5 ) .  
Two points, A and B, each instantaneously at rest, are taken inside each of the 
bodies. We let d be the distance between A and B, and a be the characteristic 
length dimension of the bodies which is assumed to be the same for each. The 
parameter K ,  defined by the relation 

is then assumed to be much smaller than unity. It is in terms of this parameter 
that we shall make the expansions. 

VA is defined to be the dimensionless velocity of the body A a t  the origin A and 
8” the angular velocity of the body A .  The quantities V B  and W are similarly 
defined with respect to the body B. As in $3, we define six-dimensional force- 

K = a/d, (6.1) 

couple vectors as 
ga = (zt) and gB = (z) , 

where FA,  GA, FB, GB are the forces and couples acting on the bodies A and B 
(about the respective origins). 



Stokes resistance of an arbitrary particle. Part 3 405 

The undisturbed dimensionless Stokes flow field (U, P) must satisfy 

v2u-VP = 0, v.u = 0 (6.3) 

everywhere whilst the complete dimensionless velocity field (u, p )  satisfies 

(6.4) 1 
v2u-vp = 0, v . u  = 0, 

u = VA + QA A rA on the surface of body A, 

u = VB + QB A rB on the surface of body B, 
U -  U as rA+m and rB+co, 

where rA and rB are dimensionless position vectors (made dimensionless by the 
length a) which are taken relative to the points A and B respectively. 

We now deftne (u*, p*) to be the disturbance flow field so that 

u = U+u*, p = P+p*. (6.5) 

This flow field must then satisfy Stokes equations with the boundary conditions 

u* = - U+VA+QAArA on the surface of A, 

u* = - U + VB + QB A rB on the surface of B, } (6.6) 

For simplicity and convenience we divide the flow field (u*, p * )  into two parts 
(uf, p:) and (ug, p;) so that 

u*+O as r A  and rB+co. 

u* = u: + u;, p* = pi +p; .  (6.7) 

Each of these flow fields (uT,pl) and (u;,p2) are made t o  satisfy Stokes equations. 
The boundary conditions on (u;, pi) are taken to be 

(6.8) 1 
uz = - U + V B  + QB A rB on the surface of B, 1 

uT = -U+VA+QAArA onthesurfaceofA, 

u; = 0 on the surface of B, 
uT+O as rA+m, 

which implies that the boundary conditions on (u;, p;) must be taken as 

u; = 0 

u;+O as 

on the surface of A ,  

(6.9) 

gf and g? are taken to be those parts of S A  and gB respectivelywhichresult from 
the flow field (u:,p;), whilst &! and 8; are similarly defined as resulting from the 
flow field (u;, p:). Thus 

s A =  gf+gf and g B =  @+if:. (6.10) 

In  order to evaluate sf, @ and gf, 8; as expansions in the parameter K ,  we 
define three regions of expansion as follows (see figure 6). 

Region I for the inner expansion a t  A. This is valid in the neighbourhood of A, 
the independent variables are taken as rA, the position vector of a point relative 
to A .  
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Region 11 for the inner expansion at B. This is valid in the neighbourhood of B, 
the independent variables are taken as rB, the position vector of a point relative 
to B. 

Region 111 for the outer expansion. This is valid outside regions I and 11, the 
independent variables F A  being defined by 

FA = KrA.  (6.11) 

We denote the value of PA a t  the point B by the unit vector R. The present 
problem is solved by expanding (u:, &) and then (ug, pg) in terms of the para- 
meter K in the above three regions. In  region I we require the boundary condition 

Region I1 

FIGURE 6 

on the surface of body A to be satisfied whilst in region I1 the boundary condition 
on the surface of body B must be satisfied. The outer boundary conditions on the 
expansions in regions I and I1 are obtained by matching them onto the expansion 
in region 111 at the points A and B respectively. Thus proceeding as in 3 3, it may 
be shown finally that is given by 

af '= -a a .BA+ [KPf : (0u)A + K2pf[3](&vP u), + - * * I  
+x Ka+b+-+n{P,a+l[a+ 11(,+1M~)[bI(,q~+1)[c+ ~1*.*(&+1)[m+ 11(?7&+1M3} 

+[n]{l$.stA+ CK(,qf) : ( ~ U ) A + K ' ( ~ ~ ~ ) [ ~ ] ( ~ ~ ~ U ) ~  + ...I}, (6.12) 

whilst is given by 

a;" = c K"+b+.-+yP,A+l[a + 11(,+1M~)[~I(,q,B,,)Cc + 11(C+,M2)[dl.. * 
+ '1(8+1 M?)}[tl{l? .BB + [K(tq?) : u)B + K2(iqf)[31(&Pv u)B f '.*I>, 

(6.13) 

where (6.14) 

the quantities UA, (PU),, (vPU),,etc., being the valuesof U and its derivatives 
with respect to F A  evaluated at  A ,  and the quantities U,, (VU),, (vPU),, etc., 
the values of U and its derivatives evaluated a t  B. In  the equation (6.12) the 
summation is taken over all integral values of a, b, . . . , n such that 

a,c  ,..., m > 0 ,  b ,..., l , n > l ,  (6.15) 
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whilst in equation (6.13), a, c,  . . . , t take all integral values such that 

a , c  ,..., 8 2 0 ,  b ,..., r , t > l .  (6.16) 

The quantities R”, p:, rqt and 1: are the quantities R, pn, ,qs and 1, defined in 
5 3 for the body A, whilst RB, p&q,” and 1: are similarly defined for the body B. 
All such quantities are independent of R and depend only on the shape of the 
body concerned. The tensors rMf and rM: occurring in equations (6.12) and 
(6.13) are functions only of R and are independent of the shapes of the bodies. 
It may be shown that 

or in general that in polyadic notation 

where Vr-l is defined by 
vr-1 = (VVV. . . V), 

(6.17) 

(6.18) 

the product of (r- 1) factors and the symbol 
index without any other operation as in the following expression 

denotes the transposing of an 

(6.19) 

The quantity ,M,” is an (r + 8)-order tensor defined in the same manner as rM$ 
but with R replaced by - R. Thus i t  is observed that 

,M,” = ( - l)r+srMf. (6.20) 

Adding the equations (6.12) and (6.13) the value of is obtained as 

&” = - R“ .?w + [KPf : (a U), + K2p3[3](+VV U), + . . .] 

(ls,B+l)[m + %+1 M3”I {I:. B” + [ K ( n q f )  : (W, 
+ c @+b+ ...+ n {p$+:,[a+ ~ l ~ u + l ~ ~ ~ ~ ~ l ~ , ~ , B l ~ ~ ~ +  lI(C+lMif) [dl (ds:+l)[e + 11*.. 

+K2(,sa[3l(aa~U,, + -11 
+ Zi $+‘+-.~{~$+~[+l[a+ 1](~+lM~)[6](g~B+J[E + l](c+1M;)[J] ... 

(di++,)[z+ l ] ( s + l M ~ ) ) [ f ] { l ~ . ~ B +  [K(tq?) : (Ou) ,+K2( tq~) [3 ] (80au)~+  ...]>Y 
(6.21) 

(6.22) 

It may be shown that the formula for gB is obtained by interchanging the A and 
Bin equation (6.21). 

1 where a,c  ,..., m 2 0 ,  b )...) l , n > l ;  
- 
a,E, ..., 3 2  0, 6, ..., F , Z >  I .  
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7. Examples of two bodies at large separation 
In  this section we make use of results obtained in $ 6  to find the force and 

couple acting upon each of two axially symmetric bodies with fore-aft symmetry 
which are translating without rotation in a fluid in such a manner that the 
distance between them is large compared with their size. For simplicity we 
assume that the two bodies are of identical shape and are translating with 
identical velocities in the direction of the line joining their centres. The axes of 

FIGURE 7. 

symmetry of each of the bodies are assumed to be perpendicular to their velocities 
(figure 7). At the centres A and B of the bodies we take axes ( 1 , 2 , 3 )  and 
(l’, 2’, 3’) respectively such that 1 and 1’ lie along AB and the axes 2 and 2’ are 
symmetry axes for the bodies. We let 0 be the angle between axes 3 and 2‘. 

Since bot8h bodies A and B are centrally symmetric 

A: = ,s,” = 0 (7.1) 

if (r  + s) is odd. Since the velocity V has components ( V ,  0, 0) relative to the 
(1 ,2 ,3)  set of axes, the values of the force FA and couple G” acting upon the body 
A may, by equations (6.12), (6.20) and (7.1), be written in the forms 

(7.2) Fa = (FA, 0, 0), G” = (Ga, 0, 0), 



and 

= f W K 2 { ( E  : 2qt)lpq ( 2 W q p 1  ( l d 7 l l l V  + ."@ : 2931pn (2Jff)qpl 

x (14311 ( l~ f ) l l ( l ! ? f ) l l~~  + ."{b : 2qf)lpq (2ifff)qp1(1pI?)11~1~f~11(1plfl)11 

x (1Jff)ll (lP311+ (E : 2qf)lpqrs (4JWsrqp1(14311 

+ (E :29~) lp , (gJfe)q~lsr(3~1B)?sf l )v l+  O ( 4 ,  (7.4) 

all the tensors being expressed relative to the (1, 2, 3) set of axes. Since the two 
bodies are of identical shape 

(1Pf)ll = (1q31,1, = (1d711. (7.5) 

Thus, by making use of this relation, it is seen that the equation (7.3) for FA is of 
the form 

V 
a + bK + cK3 + dK4 FA = +OW) ,  (7.6) 

where a, b ,  c ,  d are constants. Each term occurring in (7.3) up to and including 
terms of order K4 may be shown to be independent on the angle 8; e.g. the term 

T = - 8n@(ld)ll( lJff)lpq (243qpsr (2Jff),l(lPf)ll v 

T = - 8n."(1q;9)1,1, (lJff)l,p,q, (2&q,p,s,r, (Zifff)r%T (l!E%l, v, 
may be written in terms of the (l', 2', 3') set of axes as 

in which we see that each factor is independent of 8 since (lqf)l,r = (lq$)ll. Hence 
the constants a, b ,  c and d appearing in equation (7.6) are functions only of the 
shape of the bodies A and B and are independent of the angle 8. This result is 
in agreement with the calculations performed by Wakiya (1965) for a pair of 
spheroids. 

By making further use of the symmetry of the bodies, the equation (7.4) for 
W reduces to 

CIA = 8nfl(c : 2qt)lpq ( Z J f a p p t s r  ( 3 8 ) p ~ t l  V + o ( e *  (7.7) 

For the body A ,  the tensor (E :2qf)lpg [relative to the (1, 2, 3) set of axes] is zero 
unless ( p ,  q)  is equal to (2, 3) or (3, 2). However, the tensor (2Mf)qptsr is also zero 
unless the set of indices (qptsr) contains an even number of 2's and of 3's. Thus 
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the contribution to GA is zero unless ( t s r )  is a permutation of (1 2 3). Expressing 
the tensor ( 3 q f )  relative to the ( l ‘ ,  2’, 3’) axes we have 

(341B)rstl = 9a,asb’atc*%Z, (3qf)a‘vc‘d’ ,  (7.8) 

where aii is the transformation matrix from one set of axes to the other, i.e. 

0 

aii = 0 cos8 -sin0 . (7.9) 

(7.10) 

The symmetry of the body B relative to the (l’, 2’, 3‘) set of axes requires that 
(Bq~)a,uc,l’ is zero unless the set (a‘, b‘, c’) contains an even number of 2’s and 3’s 
and an odd number of 1’s. Thus since we have also shown that (3q$)rsll is zero 
unless ( t s r )  is a permutation of (1 2 3) it  follows that each non-zero component of 
(3qT)rstl must be proportional to sin8 cos8 (see equation (7.9)). Thus the equa- 
tion (7.7) for GA is of the form 

G A  = .“f sin 8 cos 8V + O ( K ~ ) ,  

(1 sin8 coI8)  

Hence (3qT)rstl = ardasb’atc’ (3q?)a’B’c‘l’. 

(7.11) 

where f is a constant independent of 8. 
There is a discrepancy between the equation (7.11) and the corresponding 

result for two spheroids obtained by Wakiya (1965) who obtained the dependence 
upon 8 as being proportional to sin 0 cos 8( 6 cos2 8 - 1) . t  

8. Discussion 
In  this paper we have found the force and couple acting upon a solid body of 

arbitrary shape which moves in a fluid which is itself undergoing some arbitrary 
motion, there also being solid and free surface boundaries present. Such a solu- 
tion was obtained as an expansion in a small parameter K defined as the ratio of 
particle size to the length scale of the undisturbed fluid motion. This expansion 
contained an infinite number of coefficients each of which could be obtained by 
solving a well-defined Stokes flow problem relating either to the body or to the 
surrounding boundaries. Thus in order to obtain a solution to any particular 
order in K ,  we have reduced our rather complicated problem to one of solving a 
set of simpler problems. 

Even when it is not possible to obtain any of the coefficients occurring in the 
solution, such results may, as we have seen, be used to find the form of the expan- 
sion, thus showing for instance the order of magnitude of the wall effects. With 
such a knowledge of the form of the expansion, it would then be possible to find 
values for the unknown coefficients by experimental means. Such a procedure 
would be particularly useful for cases in which the body and the surrounding 
walls possessed some form of symmetry. 

As has been shown in $54, 5 and 7, the theory may also be used as a partial 
check upon the correctness of the solution for the many problems for which the 

t It would appear that the values of the constants b,,,, bOo3, cOl2 and cO3, given by 
Wakiya (see equation (4.5) on page 1511 of this reference) we incorrect. 
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actual coefficients in the expansion in K have been obtained by the method of 
reflexion and other means. 

Because of the very general nature of the results obtained in this paper, they 
may be used in further theoretical investigations on the motion of particles of 
arbitrary shape. Thus in a forthcoming paper by Cox & Brenner, these results 
will be used to investigate the effect of fluid inertia upon the motion of a particle 
moving in the neighbourhood of walls, with special application to the lateral 
migration of solid particles in Poiseuille flows. 

This work was supported by the National Science Foundation under Grant no. 
NSF: GK-56. 

R E F E R E N C E S  

BRENNER, H.  1962 J .  Fluid Mech. 12, 35. 
BRENNER, H.  1964a J .  Fluid Mech. 18, 144. 
BRENNER, H. 1964b Chem. Engng Sci. 19, 703. 
BRENNER, H. 1964c Appl. Sci. Res. 13, 81. 
BRENNER, H. & SONSHINE, R. M. 1964 Quart. J .  Mech. AppZ. Math. 17, 55. 
CHANQ, I. D. 1961 2. amgew. Math. Mech. 12, 6. 
CHAPMAN, S. & COWLING, T. G. 1961 The Mathematical Theory of Non-Uniform Cases, 

Cox, R. G. & BRENNER, H .  1967 The lateral migration of solid particles in Poiseuille 

CUNNINGHAM, E. 1910 Proc. Roy. SOC. A, 83, 357. 
FAMULARO, J. 1962 D.Engng.Sci. Thesis, New York University. 
HABERMAN, W. L. & SAYRE, R. M. 1958 Motion of rigid and fluid spheres in stationary 

and moving liquids inside cylindrical tubes. David Taylor Model Basin Rept. no. 
1143. 

LANDAU, L. D. & LIFSHITZ, E. M. 1959 Fluid Mechanics, p. 67. Reading, Mass. : Addison 
Wesley. 

MILNE, E. A. 1957 Vectorial Mechanics. London: Methuen. 
OSEEN, C. W. 

WAKIYA, S. 1957 J .  Phys. Soc. Japan, 12, 1130 (with corrigenda, ibid. p. 1318). 
WAEIYA, S. 1959 Effect of a submerged object on a slow viscous flow-spheroid at an 

arbitrary angle of attack. College of Engng Niigata Univ. Research Rept. no. 8 (in 
Japanese). 

2nd ed. Cambridge University Press. 

flows. Part 1. Theory. (In the Press.) 

1927 Neuere Methoden und Ergebnbse im der Hydrodymamik. Leipzig: 
Akademische Verlagsgesellschaft. 

WAKIYA, S. 1965 J .  Phys. SOC. Japan, 20, 1502. 




